×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2410.05633v1 Announce Type: new
Abstract: For many binary mixtures, the three-phase solid-liquid-vapor equilibrium curve has intermediate pressures that are higher than the pressure at the two pure triple points. This curve shape results in a negative slope in the high-temperature region near the triple point of the less volatile component. When freezing mixtures in the negative slope regime, fluid trapped below confined ice has latent heat released with more vapor upon cooling, and thus increases in pressure. If the rising pressure of the confined fluid overcomes the strength of the confining solid, which may be its own ice, it can produce an abrupt outburst of material and an increase in the system's overall pressure. Here, we report experimental results of freezing-induced outbursts occurring in the N2/CH4, CO/CH4, and N2/C2H6 systems, and provide insight into the phenomenon through a thermodynamics perspective. We also propose other binary systems that may experience outbursts and explore the geological implications for icy worlds like Titan, Triton, Pluto and Eris, as well as rocky bodies, specifically Earth and Mars.

Click here to read this post out
ID: 1120777; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: Oct. 10, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: